Extended Risk-sensitive Filter Based on Gaussian Process Regression
نویسندگان
چکیده
منابع مشابه
A KNN Based Kalman Filter Gaussian Process Regression
The standard Gaussian process (GP) regression is often intractable when a data set is large or spatially nonstationary. In this paper, we address these challenging data properties by designing a novel K nearest neighbor based Kalman filter Gaussian process (KNN-KFGP) regression. Based on a state space model established by the KNN driven data grouping, our KNN-KFGP recursively filters out the la...
متن کاملHierarchical Gaussian Process Regression
We address an approximation method for Gaussian process (GP) regression, where we approximate covariance by a block matrix such that diagonal blocks are calculated exactly while off-diagonal blocks are approximated. Partitioning input data points, we present a two-layer hierarchical model for GP regression, where prototypes of clusters in the upper layer are involved for coarse modeling by a GP...
متن کاملLatent Gaussian Process Regression
We introduce Latent Gaussian Process Regression which is a latent variable extension allowing modelling of non-stationary processes using stationary GP priors. The approach is built on extending the input space of a regression problem with a latent variable that is used to modulate the covariance function over the input space. We show how our approach can be used to model non-stationary process...
متن کاملGaussian Process Regression Networks
We introduce a new regression framework, Gaussian process regression networks (GPRN), which combines the structural properties of Bayesian neural networks with the nonparametric flexibility of Gaussian processes. This model accommodates input dependent signal and noise correlations between multiple response variables, input dependent length-scales and amplitudes, and heavy-tailed predictive dis...
متن کاملKNN-based Kalman filter: An efficient and non-stationary method for Gaussian process regression
The traditional Gaussian process (GP) regression is often deteriorated when the data set is large-scale and/or non-stationary. To address these challenging data properties, we propose a K-Nearest-Neighbor-based Kalman filter for Gaussian process regression (KNN-KFGP). Firstly, we design a test-inputdriven KNN mechanism to group the training set into a number of small collections. Secondly, we u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the Society of Instrument and Control Engineers
سال: 2018
ISSN: 0453-4654,1883-8189
DOI: 10.9746/sicetr.54.253